

Risk and failure aspects in twin screw extrusion

MARKUS MEYER*

Bühler AG, CH-9240 Uzwil, Switzerland

Received 30 September 1999

There is a multitude of norms and general guidelines relevant to machine safety. Two possibilities are discussed which allow a systematic analysis of hazards concerning processes, process steps and machines down to their components, and which allow appropriate measures to be defined. It concerns the so-called FMEA (Fehler-Möglichkeits- und Einfluss-Analyse = Fault Occurrence and Influence Analysis) and classical safety analysis. Using some examples from the field of extrusion technology, the application of safety analysis is demonstrated and the measures are described that have to be realized to guarantee protection for people.

Keywords: Extrusion, twin screw extruder, food- and feed-extrusion, safety analysis

Introduction

In the global marketplace, international standards are becoming more and more important. Starting in the USA, severe product liability has been established worldwide and has given us unequivocal instructions for the safety of industrial installations. With the continuing developments in technology, process stages, the related machinery and equipment, all reasonable technical measures for the safety of personnel must be realized. In the following, some aspects of safety in extrusion plants are explained, using as an example the development of a new product.

Product liability

Product liability statutes

- *Target of product liability statutes* Product liability shall clearly be assigned to the supplier and producer. This means that both the producer of a whole machine and the producer of a component can be made liable for any damage caused by reason of a faulty product they supplied.
- Faulty product A product can have been faulty in construc-

*E-mail: es.buhler@buhlergroup.com

tion, manufacture or installation. A product is faulty if it does not provide the safety that reasonably might have been expected after considering all the eventualities.

What occurs in the case of damage?

Any damage can have the following consequences.

• An injured party can claim damages. The injured party, however, has to prove the damage, the fault, and the causal connection between fault and damage. The supplier/producer would then be liable for damages in a case where there is a claim for compensation for damage unless the supplier/producer can prove that he has fulfilled his duty of care in development, production and supply.

How can liability be avoided?

- Fulfilment of rules The manufacturer is committed
 - to fulfil all relevant EC guidelines during development and planning of products,
 - to document the efforts concerning safety of the product,
 - to document the manufacturing processes and tests, and
 - to provide the correct presentation of his products (advertising media, operating instructions).

Technology, Law and Insurance ISSN 1359-9372 print ISSN 1468-4500 online © 2000 Taylor & Francis Ltd www.tandf.co.uk/journals DOI: 10.1080/13599370010013549

• Safety analysis

148

The manufacturer is committed to perform an analysis to determine all the hazards which might be caused by his machine. The results of the hazard analysis and the measures to eliminate the recognized danger in order to save persons are to be listed in the technical documentation. If it is absolutely impossible to eliminate them, he must provide prior warning.

• Safety standard

The safety requirements have to be realized by solutions that satisfy the present state of technology.

Instruments to guarantee product safety

There are two methods for analysing the security of industrial installations.

- FMEA (Fehler-Möglichkeits- und Einfluss-Analyse). FMEA is a method for identifying at an early stage any possible faults during the development of a new product and eliminating them by appropriate actions. FMEA is often applied to seek possible faults which may lead to damage in operation. This serves to maximize product quality. For this procedure personal security is not the most important thing. As a first step the construction and operation are scanned for potential faults (type of fault, cause and consequences). The possible fault is then weighted by the product of the probability of occurrence \times consequences \times probability of discovering it. A priorities catalogue is created from this and used to determine which of the problems have to be solved urgently, which are of medium significance, and which require no action. After taking account of all the faults, the improved status is then reanalysed.
- Safety analysis. This serves to examine facilities and machines principally with regard to personal protection. The risk *R* is defined as event probability $P \times$ consequence T. The results of the analysis are shown in a risk diagram (Fig. 1). By appropriate actions all risks situated in the right upper section of the matrix are moved to the left lower section. Appropriate actions aim to minimize the risk by reducing the frequency and/or the consequences.

Figure 1 Risk diagram

А

R

С

р

E

Increasing frequency

often

possible

sometimes

infrequent

improbable

not possible

rsonnel damage

risk after realization of

measures

IV

an be self treated

The process step extrusion

Figure 2 shows the process step extrusion, consisting of a pre-conditioner and a extruder, while Fig. 3 illustrates the flow of material. The parts in detail are:

ш

injury, medical treatment required

Increasing consequences

- Pre-conditioner (1) with paddle shafts
- Drive with motor (2), gear box (4), coupling (3), base frame (5)
- Section of screw-shaft coupling (6)
- Extruder inlet (7)
- Process section with inlet barrel (8), process barrel (9), degassing barrel (10), process shaft (11)
- Degassing spout (12)
- Temperature control channel (13) and cable channel (14)
- Extrusion head with die (15)
- Cutter (16)
- Operating panel (17)
- Terminal box/power panel

The natural appearance of the main parts, only schematically illustrated in Figs 2 and 3, is shown in Figs 4 and 5. Having identified the individual zones of the installation, the next step is to determine the danger zones.

Danger zones

The principal danger zones of the process steps of pre-conditioning and extruding are:

disablema

Risk with twin screw extrusion machine

Figure 2 Process step preconditioner/extruder. See text for details.

Figure 3 Material flow when solid, steam, water and liquid are added

149

Figure 4 Preconditioner with mixing and retention zone for continuous mixing, heating up and pre-cooking of flour batches in food and feed applications

Figure 5 Extruder for continuous mixing, kneading, gelatinizing and forming of flour batches to produce snacks, cereals, functional foods, ingredients, pet foods, aqua-feed, etc.

- 1. pre-conditioner with paddle shafts and hot surfaces
- 2. main motor with transfer of force on the gearing
- 3. gear box with transfer of force on the screw shafts
- 4. extruder inlet
- 5. barrel heating system with hot surfaces
- 6. degassing
- 7. extrusion head
- 8. cutter
- 9. terminal box/power panel

After these danger zones have been listed and considered, the extruder system can be examined according to the Safety Analysis documented below. Under this Safety Analysis, only those risks are considered where personal injury may result. However, the analysis is incomplete in that, for example, the pre-conditioner part is not included.

Safety analysis

When analysing the safety of a product or a process the first step is to establish a risk catalogue as presented in Table 1. Next a catalogue of measures for overcoming these risks must be established, as shown in Table 2. This procedure finally will lead to a revised risk diagram as shown in Fig. 6.

Symbols used	
T: Consequences	
I = very large	case of death or disable-
(catastrophic)	ment
II = large (critical)	longer hospitalization nec-
	essary, eventual partial
	disability
III = medium	injury, medical treatment
	required
IV = small (insignifi-	light injury, can be self-
cant)	treated
H: Frequency	
A = often	
B = possible	
C = sometimes	

- D = infrequent
- E = improbable
- F = not possible

When analysing the safety of a product or a process the first step is to establish a risk catalogue as presented in Table 1. Next a catalogue of measures for overcoming these risks must be established, as shown in Table 2. This procedure finally will lead to a revised risk diagram as shown in Fig. 6.

This article is not meant to be final and/or complete. It may not be used as reference.

Conclusion

Through diligent safety analysis, most disruption of production, including damage to property and/ or injury to personnel can be avoided. However, a presupposition is that all the danger has been recognized. Across the range of potential personal injury they mostly are evident. However, faulty construction that could lead to damage to property is more difficult to assess (and inevitably Murphy's law applies). Therefore it is essential to set up an expert team to apply this method and to reapply it throughout the various stages of machine development.

Table 1 Risk catalogue

No.	Hazard	Cause	Consequence	Т	Н		
Cutter							
1 2 2	Rotating blades Ejecting blades	Manipulation mistake (grabbing into) Broken blades Manipulation mistake	Cut injury Cut injury Contusion	II II III	C C C		
3 4	Pneumatic closing	Manipulation mistake	Contusion		Ċ		
6	Access to the blades from the top side	Missing cover	Cut injury	II	C		
7	Access to the blades from the top side	Blade adjustment, maintenance work	Cut injury	II	С		
8	Access to the blades from the underside	Manipulation mistake, sampling	Cut injury	Π	С		
9	Pneumatic opening	Process interlock	Scalding from shoot out of product	Ι	В		
10	Shaft of cutter motor	Manipulation mistake	Body injury	III	С		
11	Cutter motor	Short circuit, splashing water	Electrical shock	III	С		
Extr	uder inlet/degassing spout						
24 25	Grabbing into the extruder inlet Sight glass at the degassing spout	Missing cover Cracking of sight glass due to over pressure	Cut injury Body injury, scalding	II II	C D		
Driv	e						
26 37 38 40	Noise Coupling motor-gear box Coupling gear box-screw shafts Failure of coupling motor-gear box, unbalance	Too high emission sound pressure level Manipulation mistake, missing cover Manipulation mistake, missing cover Ejecting parts	Hearing damage Injury by hit, contusion Injury by hit, contusion Body injury	III II II II	A C C D		
43	Main motor	Short circuit, splashing water	Electrical shock	II	D		
Process section/extrusion head							
13	Extrusion head opened	Manipulation mistake, maintenance work	Scalding, body injury	III	С		
28	Leakage of heat transfer oil to the outside	Leakage of barrels/screw connections	Scalding	Π	D		
29	Leakage of steam	Leakage of barrels/screw connections	Scalding	II	D		
30	Pipes with hot oil, hot water, steam	Contact with hot pipes	Scalding	III	В		
31	Electrical barrel heating	Contact with hot surface	Scalding	III	D		
32 36	Electrical barrel heating Over pressure in the barrels	Splashing water Process conditions	Electrical shock Body injury	II II	D D		

 Table 2
 Catalogue of measures

No.	Т	Н	Hazard	Measures			
Cut	ter						
1	II	Е	Rotating blades	Electrical interlocking, safety category 3 (EN 954), mech. retarding element for blade stop			
2	IV	С	Ejecting blades	Closed housing			
3	IV	С	Pneumatic closing	Movement controlled through pulse push-button, automatic re- opening at premature releasing			
4	III	Е	Pneumatic opening	Floor marking or fixed guard by civil engineering, note in operation manual			
6	II	Е	Access to the blades from the top side	Screen cover fixed with bolts, note in operation manual			
7	II	Е	Access to the blades from the top side	Screen cover fixed with bolts, note in operation manual			
8	II	Е	Access to the knives from the under side	Design of outlet spout: ratio of sample hole diameter/distance to blades according to EN 294			
9	IV	В	Pneumatic opening	Solid cover, fixed with bolts, note in operation manual + warning sign on the machine + floor marking			
10	III	Е	Shaft of cutter motor	Cover			
11	III	Е	Cutter motor	IP55			
Extruder inlet/degassing spout							
24	II	Е	Grabbing into the extruder inlet	Prevention of access according to EN 294			
25	II	Е	Sight glass at degassing spout	Splinter resistant sight glass, fixed with elastic force, note in operation manual, standard lid/flange (may not be exchanged)			
Driv	/e						
26	III	D	Noise	Noise values noted in the operation manual, protocols of the sound pressure level measurements			
38	II	Е	Coupling motor-gear box	Solid cover, fixed with bolts			
39	IV	E	Coupling gear box-screw shafts	Adjusted and interlocked by the manufacturer			
40	IV	Е	Failure of coupling motor-gear box, unbalance	Solid cover, fixed with bolts; note in the operation manual			
43	II	Ε	Main motor	IP55, IC37, cleaning only with equipment turned off, note in the operation manual, local switch			
Process section/extrusion head							
13	IV	D	Extrusion head opened	Note in the operation manual, personal protection kit (safety gloves), local switch for the main motor			
28	II	Е	Leakage of heat transfer oil to the outside	Leak test of barrels and of plugs before assembling (definition of test pressure)			
29	II	Е	Leakage of steam	Leak test of plugs before assembling (definition of test pressure)			
30	III	Е	Pipes with hot oil, hot water, steam	Leak test of plugs before assembling (definition of test pressure)			
31	III	Е	Electrical barrel heating	Note in the operation manual, warning sign on the machine			
32	II	Е	Electrical barrel heating	IP65			
36	II	E	Over pressure in the barrels	Appropriate construction, pressure sensor before the die, note in the operation manual			

Risk with twin screw extrusion machine

Figure 6 Revised risk diagram. See Tables 1 and 2 for details.

References

Relevant instructions in the range of machine safety

- *EN 292–1:1991*: Sicherheit von Maschinen Grundbegriffe, allgemeine Gestaltungsleitsätze - Teil 1: Grundsätzliche Terminologie - Methodik.
- *EN 292–2:1991* + *Al:1995*: Sicherheit von Maschinen -Grundbegriffe, allgemeine Gestaltungsleitsätze - Teil 2: Technische Leitsätze und Spezifikationen.
- *EN 294:1992*: Sicherheit von Maschinen Sicherheitsabstände gegen das Erreichen von Gefahrenstellen mit den oberen Gliedmaûen.
- *EN 418:1992*: Sicherheit von Maschinen NOT-AUS-Einrichtung, funktionelle Aspekte, Gestaltungsleitsätze.
- *EN 563:1994*: Sicherheit von Maschinen Temperaturen berührbarer Oberflächen - Ergonomische Daten zur Festlegung von Temperaturgrenzwerten für heiûe Oberflächen.
- *EN 626–1:1994*: Sicherheit von Maschinen Reduzierung des Gesundheitsrisikos durch Gefahrenstoffe, die von Maschinen ausgehen - Teil 1: Grundsätze und Festlegungen für Maschinenhersteller.
- *EN 811:1996*: Sicherheit von Maschinen Sicherheitsabstände gegen das Erreichen von Gefahrenstellen mit den unteren Glied-maûen.
- *EN 953:1997*: Sicherheit von Maschinen Trennende Schutzeinrichtungen - Allgemeine Anforderungen an die Gestaltung und Bau von feststehenden und beweglichen trennenden Schutzeinrichtungen.

- *EN 954–1:1996*: Sicherheit von Maschinen Sicherheitsbezogene Teile von Steuerungen - Teil 1: Allgemeine Gestaltungsleitsätze.
- *EN 982:1996*: Sicherheit von Maschinen Sicherheitstechnische Anforderungen an fluidtechnische Anlagen und deren Bauteile - Hydraulik.
- *EN 983:1996*: Sicherheit von Maschinen Sicherheitstechnische Anforderungen an fluidtechnische Anlagen und deren Bauteile - Pneumatik.
- EN 1088:1995: Sicherheit von Maschinen Verriegelungseinrichtungen in Verbindung mit trennenden Schutzeinrichtungen-Leitsätze für Gestaltung und Auswahl – Allgemeine Gestaltungsleitsätze und festlegungen.
- EN ISO 3744:1995: Akustik Bestimmung der Schalleistungspegel von Geräuschquellen aus Schalldruckmessungen - Hüllflächenverfahren der Genauigkeitsklasse 2 für ein im wesentlichen freies Schallfeld über einer reflektierendenEbene (ISO 3744:1994).
- *EN ISO 4871:1996*: Akustik Angabe und Nachprüfung von Geräuschemissionswerten von Maschinen und Geräten (ISO 4871:1996).
- EN ISO 9614–1:1995: Akustik Bestimmung der Schalleistungspegel vonSchallquellen aus Schallintensitätsmessungen - Teil 1: Messungen an diskreten Punkten (ISO 9614–1:1993).
- EN ISO 9614–2:1996: Akustik Bestimmung der Schalleistungspegel von Geräuschquellen aus Schallintensitätsmessungen - Teil 2: Messung mit kontin uierlicher Abtastung (ISO 9614–2:1996).
- EN ISO 11201:1995: Akustik Geräuschabstrahlung von Maschinen und Geräten - Messung von Emissions-Schalldruckpegeln am Arbeitsplatz und an anderen festgelegten Orten-Verfahren der Genauigkeitsklasse 2 für ein im wesentlichen freies Schallfeld über einer reflektierenden Ebene (ISO 11201:1995).
- EN ISO 11204:1995: Akustik Geräuschabstrahlung von Maschinen und Geräten - Messung von Emissions-Schalldruckpegeln am Arbeitsplatz und an anderen festgelegten Orten-Verfahren mit Umgebungskorrekturen (ISO 11204:1995).
- *EN 60204–1:1992*: Sicherheit von Maschinen Elektrische Ausrüstung von Maschinen Teil 1: Allgemeine Anforderungen.
- EN 60529:1991: Schutzarten durch Gehäuse (IP-Code).

Safety requirements for extruders and extrusion plants

- *EN 1114–1:1997*: Extruder und Extrusionsanlagen Teil 1: Sicherheitsanforderungen für Extruder.
- EN 1114–2:1997: Extruder und Extrusionsanlagen Teil1: Sicherheitsanforderungen für Kopfgranulatoren.